A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase I

Completed Technology Project (2009 - 2009)

Project Introduction

NASA needs high stability laser source of 1W output power for Lidar applications. Princeton Optronics has developed ultra-stable, narrow linewidth diode pumped solid state lasers using stable packaging and high performance locker. We have also developed high power Vertical Cavity Surface Emitting Laser (VCSEL) semiconductor laser sources. We propose to develop a high reliability master oscillator power amplifier (MOPA) type of source with VCSEL as a master oscillator and a semiconductor optical amplifier to obtain a power level of 1W CW. We would use our laser welded packaging technology to develop a rugged package which could be space qualified. By the end of the SBIR program we plan to develop a CW laser source in MOPA configuration for phase modulation and the packaged unit can be space qualified.

Anticipated Benefits

Potential NASA Commercial Applications: A high stability laser will have a significant market for LIDAR, RF photonics and sensor applications. The users will be military, NASA, homeland security, cable television distribution and oil exploration industry. The total market for ultrastable lasers is currently at tens of millions of dollars. Princeton Optronics will commercialize the product very soon after development.

Primary U.S. Work Locations and Key Partners

A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase I

Table of Contents

Project Introduction	
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3

Small Business Innovation Research/Small Business Tech Transfer

A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase I

Completed Technology Project (2009 - 2009)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
Princeton Optronics,	Supporting	Industry	Mercerville,
Inc.	Organization		New Jersey

Primary U.S. Work Locations		
Delaware	New Jersey	
Virginia		

Project Transitions

January 2009: Project Start

July 2009: Closed out

Closeout Summary: A High Reliability Frequency Stabilized Semiconductor Las er Source, Phase I Project Image

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

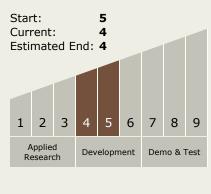
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Laurence S Watkins

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase I

Completed Technology Project (2009 - 2009)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - □ TX08.1 Remote Sensing Instruments/Sensors
 - └ TX08.1.5 Lasers

